This article was downloaded by: [University of Haifa Library]

On: 16 August 2012, At: 09:00 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl19

Synthesis and Synchrotron Radiation Structure Analysis of Tetra-Dithiopropanato-Diplatinum(II) with Infinite Linear Chain Structure

Minoru Mitsumi ^a , Tetsuya Yoshinari ^a , Yoshiki Ozawa ^a & Koshiro Toriumi ^a

^a Department of Material Science, Faculty of Science, Himeji Institute of Technology Harima Science Garden City, Hyogo, 678-1297, Japan

Version of record first published: 24 Sep 2006

To cite this article: Minoru Mitsumi, Tetsuya Yoshinari, Yoshiki Ozawa & Koshiro Toriumi (2000): Synthesis and Synchrotron Radiation Structure Analysis of Tetra-Dithiopropanato-Diplatinum(II) with Infinite Linear Chain Structure, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 342:1, 127-132

To link to this article: http://dx.doi.org/10.1080/10587250008038255

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis and Synchrotron Radiation Structure Analysis of Tetra-Dithiopropanato-Diplatinum(II) with Infinite Linear Chain Structure

MINORU MITSUMI, TETSUYA YOSHINARI, YOSHIKI OZAWA and KOSHIRO TORIUMI

Department of Material Science, Faculty of Science, Himeji Institute of Technology Harima Science Garden City, Hyogo 678–1297, Japan

Diplatinum(II) complex, Pt₂(EtCS₂)₄, is synthesized and characterized by X-ray crystal structure analysis using a synchrotron radiation at SPring-8. The crystal structure consists of diplatinum units stacking in columns along the four-fold axis, with intra and interdimer Pt-Pt distances of 2.764(1) and 3.428 (1) Å, respectively.

Keywords: diplatinum(II) complex; crystal structure; synchrotron radiation; linear chain structure

INTRODUCTION

Halogen-bridged one-dimensional diplatinum complex, Pt₂(dta)₄I (dta = MeCS₂⁻), which was first prepared and characterized by Bellitto et al., the shows anomalous electrical conducting behavior (> 300 K, metallic)^[2] and structural phase-transition at 371–372 K. In order to clarify the anomalous structural and solid-state properties observed for Pt₂(dta)₄I, it should be an effective approach to investigate the correlation between the solid-state properties and the geometric and electronic structures systematically for a series of the chemically modified halogen-bridged

one-dimensional diplatinum complexes. In order to study such chemistry, it is necessary to synthesis the precursor complex, $Pt_2(RCS_2)_4$. Here we report the synthesis and crystal structure of the complex, $Pt_2(EtCS_2)_4$, containing dithiopropanate $(EtCS_2^-)$ as a bidentate ligand.

EXPERIMENTAL

Synthesis

To a solution of dithiopropanoic acid^[4] (1.95 g, 18.4 mmol) in 300mL of toluene was added PtCl₂(NCPh)₂ (2.16 g, 4.58 mmol) under argon atmosphere. The mixture was refluxed for 2h with stirring. The solution turned dark red. On cooling, the brownish olive needles separated from the solution was collected, washed with toluene. The crude product was recrystallized from toluene to afford 1.41 g (71% yield based on PtCl₂(NCPh)₂) of Pt₂(EtCS₂)₄ as brownish olive needles with copper luster. IR (KBr, cm⁻¹): 2978 (w), 2929 (w), 2910 (vw), 2868 (vw), 1456 (w), 1450 (w), 1425 (m), 1365 (w), 1298 (w), 1273 (w), 1157 (s), 1099 (vw), 1045 (m), 962 (s), 947 (m), 939 (m), 783 (vw), 615 (vw), 538 (w). Anal. Calcd for C₁₂H₂₀Pt₂S₈: C, 17.77; H, 2.44.

X-ray Crystal Structure Analysis

A crystal of $Pt_2(EtCS_2)_4$ having dimensions of 40 x 50 x 100 μ m³ was mounted on a glass fiber with epoxy resin. The measurement was carried out using a vacuum X-ray camera and a synchrotron radiation (20 keV, $\lambda = 0.62$ Å) monochromated by a Si(111) double crystal and a

mirror at beam line BL02B1 at SPring-8. The data was collected with ϕ -oscillation method with imaging plate (IP) area detector at 298 K. 25 frames of 8° oscillation range were used, starting at 0, 7°, etc. in ϕ . Indexing and integration of intensities were made by applying the DENZO program. The unit cell was determined using the SCALEPACK program. The crystallographic data are tetragonal with space group P4/n, a = 13.122 (1) Å, c = 6.192 (1) Å, V = 1066.2 (2) Å³, Z = 2, and $D_{calc} = 2.526$ g cm⁻³. The structure was solved by direct method and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were placed in the calculated positions. 2077 reflections were collected, of which 836 unique reflection were used for refinement. Structural analysis was made by the teXsan, converging to R = 0.043, $R_w = 0.063$.

RESULTS AND DISCUSSION

An ORTEP diagram of $Pt_2(EtCS_2)_4$ is shown in FIGURE 1 and a stereoview of the unit cell is shown in FIGURE 2. The crystal structure consists of diplatinum units stacking in columns on the crystallographic four-fold axis parallel to the c axis, with interdimer

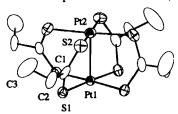


FIGURE 1 ORTEP diagram of Pt₂(EtCS₂)₄ with atomic numbering scheme and 50 % thermal ellipsoids.

Pt···Pt distance of 3.428 (1) Å. Similar linear chain structures were observed for $Pt_2(RCS_2)_4$ ($R = Me^{\{5\}}$, i- $Pr^{\{6,7\}}$, n- $C_6H_{13}^{\{8\}}$, $PhCH_2^{\{7\}}$). Two platinum atoms are bridged by four dithiopropanato ligands and the Pt–Pt distance is 2.764 (1) Å, which is ca. 0.09 Å shorter than the distance between the mean planes defined by the four sulfur atoms. This intramolecular Pt–Pt bonding interaction would be attributed to hybridization of the vacant Pt–Pt p σ or p σ * orbital and the occupied Pt–Pt d σ or d σ * orbital, as has been pointed out Kawamura et al.. [8] Furthermore, the interaction of the vacant p σ and occupied d σ * orbitals of adjacent diplatinum units would contribute to intermolecular Pt–Pt binding interactions. [8] The Pt–S distances are 2.322 (4) and 2.324 (4)

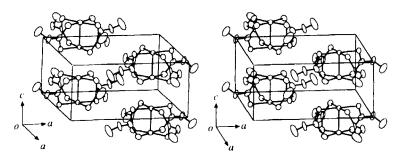


FIGURE 2 A streoview of the unit cell of Pt₂(EtCS₂)₄.

Å and the Pt-Pt-S angle is 91.1°. In the dithiopropanato ligand, the C-S distances are 1.68 (2) and 1.71 (1) Å, the S-C-S angle is 127 (1)°, and the Pt-S-C angle is 109.6 (6) and 110.0 (6)°. The torsion angle concerning Pt-Pt axis is S(1)-Pt(1)-Pt(2)-S(2)=26.4 (2)° and then the two PtS₄ planes are twisted by ca. 26° from the eclipsed D_{4h} structure. The interdimer S···S distance is 3.503 (6) Å, which is shorter than the van der Waals contact distance of sulfur atoms (3.60 Å).

The electronic absorption spectra in the toluene solution and

solid-state (dispersed in KBr) are shown in FIGURE 3. The solid-state spectrum shows a low energy band (17.0 x 10^3 cm⁻¹) below the lowest transition energy in solution. Similar behavior was observed for Pt₂(RCS₂)₄ (R = Me^[5], *i*-Pr^[6,7], *n*-C₆H₁₃^[8], PhCH₂^[7]). The low energy band observed in the solid-state should arise from electronic interactions between diplatinum units in the linear stack. ^[7,8]

FIGURE 3 Electronic absorption spectra of Pt₂(EtCS₂)₄ in toluene solution (—) and solid state (dispersed in KBr) (·····).

TABLE 1 Electronic Absorption Spectral Data

$\lambda_{\text{max}} / 10^3 \text{ cm}^{-1} (\log(\varepsilon / \text{M}^{-1}\text{cm}^{-1}))$	
toluene solution	20.2 (2.52), 24.8 (3.42), 28.2 (3.73)(sh), 32.7 (4.51)
solid state	17.0, 23.4, 29.2

Acknowledgment

This work was supported by a Grants-in-Aid for Scientific Research from the Hyogo Prefecture and a Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

References

- [1] C. Bellitto, A. Flamini, L. Gastaldi, L. Scaramuzza, Inorg. Chem., 22, 444-449(1983).
- [2] H. Kitagawa, N. Onodera, T. Sonoyama, M. Yamamoto, M. Fukawa, T. Mitani, M. Scto, Y. Macda, J. Am. Chem. Soc., 121, 10068–10080 (1999).
- [3] K. Toriumi, Y. Ozawa, M. Mitsumi, K. Takata, M. Kim, H. Kitagawa, T. Mitani, M. Yamashita, Abstracts of Papers. XXXIII International Conference on Coordination Chemistry, Florence, Italy, 419, (1998).
- [4] K. Hartke, N. Rettberg, D. Dutta, H. -D. Gerber, Liebigs Ann. Chem, 1081– 1089(1993).
- [5] C. Bellitto, A. Flamini, O. Piovesana, P. F. Zanazzi, *Inorg. Chem.*, 19, 3632–3636 (1980).
- [6] C. Bellitto, G. Dessy, V. Fares, A. Flamini, J. Chem. Soc., Chem. Commun., 409–411 (1981).
- [7] C. Bellitto, M. Bonamico, G. Dessy, V. Fares, and A. Flamini, J. Chem. Soc., Dalton Trans., 35–40 (1987).
- [8] T. Kawamura, T. Ogawa, T. Tamabe, H. Masuda, T. Taga, *Inorg. Chem.*, 26, 3547–3550 (1987).